

Frank Brühl

Possibility of stress redistribution due to connection ductility within timber structures

Frank Brühl Universität Stuttgart, Institute of Structural Design

Motivation

In statically undetermined systems

- \sim the cross section is only partically highly utilized
- \sim other parts of the structure are hardly stressed
- \rightarrow Structural elements are designed for the highest local stresses

Motivation

~ stress redistributions in statically undetermined systems

ightarrow increased load capacity of the structure

e. g. two-span beam:

 $M_{Support} = M_{Midspan} = M_{max}$

achievable by the installation of a joint with a defined strength and stiffness

Frank Brühl

Load - deformation curve of SFS-dowels [Mischler 2001]

Frank Brühl

Joint consideration with SFS-dowels [Mischler 2001]

Frank Brühl

Motivation - Re-evaluation - Conclusions

Universität Stuttgart
Institute of Structural Design
Prof. Dr.- Ing. Ulrike Kuhlmann

Frank Brühl

Conclusions

~ Database of connections is required

with the load / deformation capacity of different type of fasteners

definition of ductility (Komatsu et al. / CIB W18)

~ Stress redistribution is possible

 \rightarrow load increase is possible

 \rightarrow Design considering the plastic behavior of fasteners is possible